

GenA Senior Design

Design Document

Team 45

Collins Aerospace - David Lempia

Dr. Tyagi

Kyle Smoot

Mason Ogborne

Chris Olsen

Mohan Zhong

Morgan Smith

sdmay21-45@iastate.edu

Revised: 09/28/2020 V1

mailto:sdmay21-45@iastate.edu

1

Executive Summary

Development Standards & Practices Used

We will follow IEEE standards for software development. Our project will include documentation

both in code and on a project level. We will comply with Collins’ ADA standards. We will provide

version control and comprehensive testing.

Summary of Requirements

We will develop a code generation tool for Collins Aerospace. This code will generate Ada code.

The generated code should be functional and provide error messages. We will use a high-level

language to develop the tool.

Applicable courses from Iowa State University Curriculum

● COMS 227

● COMS 228

● COMS 309

● COMS 319

New skills/knowledge acquired that was not taught in courses

● Code generation

● Ada code

● XML code

2

Table of Contents

Executive Summary 1

Development Standards & Practices Used 1

Summary of Requirements 1

Applicable courses from Iowa State University Curriculum 1

New skills/knowledge acquired that was not taught in courses 1

Table of Contents 2

Figures/tables/symbols/definitions 3

1 Introduction 4

1.1 Acknowledgement 4

1.2 Problem and project statement 4

1.3 Operational Environment 4

1.4 Requirements 4

1.5 Intended Users and Uses 5

1.6 Assumptions and Limitations 5

1.6a Assumptions 5

1.6b Limitations 5

1.7 Expected End Product and Deliverables 5

2 Project Plan 6

2.1 Task Decomposition 6

2.2 Risks and Risk Management/Mitigation 7

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 8

2.4 Project Timeline/Schedule 9

2.5 Project Tracking Procedures 9

2.6 Personnel Effort Requirements 9

2.7 Other Resource Requirements 10

2.8 Financial Requirements 10

3 Design 10

3.1 Previous Work and Literature 10

3.2 Design Thinking 12

3.3 Proposed Design 12

3.4 Technology Considerations 12

3.5 Design Analysis 12

3.6 Development Process 12

4 Testing 12

4.1 Unit Testing 12

4.2 Interface Testing 12

4.3 Acceptance Testing 12

4.4 Results 12

5 Implementation 13

3

6 Closing Material 13

6.1 Conclusion 13

6.2 References 13

6.3 Appendices 13

Figures/tables/symbols/definitions

● …

4

1 Introduction

1.1 Acknowledgement

We would like to thank Collins Aerospace for providing this project and supporting sample

code/documentation. We would like to extend a special thanks to David Lempia, Stan Thayer,

and Kathleen Knot for taking time to meet with and assist us regularly. We could not have done it

without them.

1.2 Problem and project statement

Collins Aerospace uses Network Data Objects (NDOs) for avionics systems to communicate with

each other. An NDO is defined using a strict XML schema, specifying IP addresses, data types,

memory addresses, and other critical information about the message. Once this schema is

created, a developer uses the information in the schema to implement the message in Ada. This is

a tedious process, and is prone to errors. When these errors occur, they require significant time

and effort to debug and correct. Collins Aerospace is looking for a solution to produce the NDOs

in a manner that is faster and less prone to errors.

Our solution approach is to create a code generator to create the NDO messages directly from the

XML schema. It will use the XML file produced by Collins as part of their requirements process. It

will create the ADA file directly. This will reduce the time needed to create the file, as well as

reduce small errors in the code. This project consists of producing the generator itself, as well as

the documentation for the project.

1.3 Operational Environment

This project is to run inside the command line. Thus, the environment is anything that can run

Java. Given the wide array of devices that satisfy this criteria, no special consideration is needed.

1.4 Requirements

1. GenA shall provide errors if XML data needed to generate software is missing from the

xml files.

2. GenA shall generate Ada Software in the Ada 95 standard (ISO-8652:1995)

3. GenA shall generate software to read and write NDO messages

a. The generated Ada software shall provide a procedure to read in NDO messages.

b. The generated Ada software shall provide a procedure to transmit NDO messages.

c. The generated Ada software shall provide a method to access the NDO messages.

4. Collins Engineers shall be able to run GenA and associated options in Windows 10 from

the command prompt.

a. GenA options shall include:

• The name of the XML file(s)

http://www.adaic.org/standards/95lrm/html/RM-TTL.html

5

• The name of the tailoring mechanism (e.g. a template file name).

5. Collins Engineers shall be able to tailor the way Ada software is generated. Note: This is

desired for growth and maintenance of the GenA tool.

a. Tailoring of GenA shall be able to generate software in different languages such as c

or c++. Note: this is desired of use of GenA in different products.

b. Tailoring of GenA shall be able to define new types of I/O.

1.5 Intended Users and Uses

● Collins Engineers - Code Generation

○ Engineers using the generator to create NDOs

● Collins Engineers - Maintainers

○ Engineers who will update the generator in the future, as requirements and

specifications evolve

1.6 Assumptions and Limitations

1.6a Assumptions

● The generator will be run from the Windows 10 Command Line

● The generator will only supports one user per running instance

● The generator is only to be used by Collins Aerospace

1.6b Limitations

● The generated code cannot be fully tested by the senior design team

● Due to security constraints, the team cannot access all related materials

● Time constraints due to the project having a hard end date at the end of the spring

semester

1.7 Expected End Product and Deliverables

1. GenA Ada Code Generator

This is the executable generator created for Collins Aerospace. It will be delivered in a

form that allows the generator to be run immediately upon reception of the generator. It

will be used for generating Ada code as part of the NDO creation workflow.

2. Generator Use Documentation

6

Documentation will be provided to Collins concerning the use of the generator. It covers

command line options, available generators, output format, and other generation options.

It also covers installation and running instructions.

3. Source code and Design documentation

This is the source code for the generator. It will also include documentation on the design

for the generator, design choices, and information needed to maintain the generator.

Documentation will also be provided for extending the generator, such as adding another

generator or message type.

2 Project Plan

2.1 Task Decomposition

Below is an outline of the tentative technical tasks and scheduling.

1. Requirements Elicitation

a. Regular meetings with Collins Aerospace research team

b. Prioritize deliverables based on timeline estimates

c. Finalize project plan and schedule

d. Research ADA language syntax

e. Research NDO message syntax

2. Project Plan Initiation

a. Train developers for their specific roles

b. Agile Development

i. Sprint planning

3. Implement Software XML Parsing

a. Integrate Windows 10 command prompt

i. Create shell program

ii. Implement XML file(s) loading

b. Implement Parsing of XML Schema.

i. Trim and reformat XML file

ii. Parse data categorically

iii. Save data to be translated

4. Implement ADA Generation

a. Interpret and translate data

b. NDO Message Implementation

i. NDO message I/O

1. Module to read in NDO

2. Transmit NDO module

3. Access NDO module

7

ii. GenA documentation

1.

2.

c. Error Correction Devices

i. Device 1: Fills missing non-crucial XML data

ii. Device 2: Outputs Descriptive Error Messaging

1. Missing crucial data

2. Corrupt XML schema

3. Formatted NDO message errors

d. Tailoring Options

i. User Defined Input Options

1. Name of the XML file(s)

2. Tailoring mechanism template

ii. User Defined Output Options

1. Output language modulation

5. System Level Testing

a. Functionality for the Code Generation engineers

6. Implement UI

7. Additional Implementations

a. …

2.2 Risks and Risk Management/Mitigation

Risk Gold Plating Developer
Parody

Incompatible
Framework

System Testing
Failure

Risk Description Over the course of
development, along
with being a
scheduling risk,
this risk involves
the scope creep of
the project to
surpass the allotted
time, and the total
cost, of
development.

During
development, if
the developers do
not stay at the
same pace when
programming
deliverables. This
is problematic
because it is
imperative to
maintain critical
due dates.

The framework
chosen to program
the project ends up
not being
compatible with all
of the deliverables.
This would require
another language to
be integrated or
replaced mid-
development.

The project would
fail the final system
testing with the
customer if this risk
were to occur.
Failure would be
due to a significant
lack of features
missing, not
working, or
breaking the
program.

Risk Category
(Cost, Scheduling,
Technical)

Cost Scheduling Technical Technical

8

Occurrence
Indicator

The cause of this
risk is the
continued feature
creep of developing
new features, and
would occur when
said features take
away from the
other established
portions of the
project.

Regular qualitative
review can
determine the
schedule of the
programming pace
compared to the
planned
deliverable dates.

Quantitative testing
and proper
planning should
both prevent and
expose this risk.
Ideally it would be
identifiable early in
development with it
becoming more
dangerous late into
development.

3-4 weeks prior to
the scheduled
delivery. If quality
testing occurs on
both the user and
customer side, this
risk will become
evident.

Impact Rating
(Negligible -
Catastrophic)

Minor Minor Serious Critical

Occurrence
Rating
(Improbable -
Frequent)

Occasional Probable Improbable Remote

Risk Exposure
Rating (Low -
High)

Medium High Low High

Response Type
(Avoid, Mitigate,
Accept, Transfer)

Accept Mitigate Transfer Avoid

Response
Strategy

The response
strategy to this
particular risk is
through having a
predefined
development scope
and schedule so
that if any feature
creep occurs, it
happens when all
main deliverables
are complete.

The strategy to
mitigate this risk
would lie primarily
in the
development of
communication
skills, project
roles, and the
relationship
between
developers and the
client.

If the project
required that, if the
current framework
proved to be
insufficient, then a
change of language
or framework
would be a worthy
response type to
transfer the risk.

Regular review and
analysis of the
current
development
process with
regular testing of
the current
product. This is
supplemented with
a rigid scope and
good version
control practices.

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria

Many potential milestones and metrics have been discussed within the group as well as with the

project sponsor. Weekly progress updates and meetings will help to evaluate the progress of each

9

individual as well as the project as a whole. Using trello, github commits and other task

management tools will allow the team to track progress of tasks and development within the

project. We have created project milestones such as reading basic XML code, passing it to the

generator and have set a timeline for those.

2.4 Project Timeline/Schedule

This project will follow the following predetermined schedule as part of the course requirements

set by the instructors.

● Sept 29 - Team Website V1

● Oct 1 - Design Document V1

○ Chapters 1 & 2 focused

● Oct 22 - Design Document V2

○ Chapters 3 & 4 focused

● Nov 12 - Final Design

○ Chapters 5 & 6 focused

● Nov 16/23 - Demo to client

● Bi-weekly project reports

In addition to these set requirements, as a team we will create further small milestones and

timeline markers in order to complete the project. Our currently proposed scheduling includes

weekly meetings and progress reports as a team as well as between the team and sponsors.

Furthermore, this project will continue as a second semester with COM S 492 in the spring

semester.

2.5 Project Tracking Procedures

This project will be tracked in many ways that will allow us to properly manage project

completion and assure that requirements are being properly met. This project will mainly be

tracked via use of github repositories and trello tasks. As a course, this class will be tracked via the

regular submission of deliverables and design documents. Additionally, continually monitoring

the project and discussing project standards and updates will allow us to continually make

changes to ensure a more successful end project.

2.6 Personnel Effort Requirements

This project will require each member of the team to be personally responsible for their share of

the project. Individual achievements and progress will be tracked easily through our choice of

project management tools as each will be linked to one, or many team members. However, much

of this project relies on each individual being responsible for completing a significant portion of

the project. This is a 3 credit course, and the second semester course is 2 credit hours. This project

should amount for roughly 5 credit hours worth of work for each individual within the group.

However, this will vary widely for each individual project.

10

2.7 Other Resource Requirements

Through discussions with the client responsible for sponsoring this project, many of the physical

requirements for the project are already in place at their facility and this code would take

advantage of already in place physical systems. Other open source resources are being taken

advantage of as parts of this project as well in order to complete the project. These resources

include video conferencing tools such as Zoom and Webex, team discussion tools such as Gmail

and GroupMe, project management tools such as Trello and Github, and likely many more

resources that have not been needed as of yet. These resources will be properly credited and are

an essential part of completing our project successfully.

2.8 Financial Requirements

This project is sponsored under Collins Aerospace as a professional development project

development experience. However, cost and financial requirements are going to be heavily

accessed within this project. As a software development project, this will have very limited

financial requirements. Additionally, many of the financial requirements of this project have

already been met as Collins has a dedicated system already in use and will likely not need further

physical resources to implement. Much of the potential cost of a project like this is associated

with manhours, salary of workers, and potential physical development needed to support code.

This project lacks many of these costs as we will all be completing this project as a part of a

course, and the physical requirements are already in place.

3 Design

3.1 Previous Work and Literature

An Engineer at Collins has developed a simple code generator. It is limited to code generation in

Ada. It does not generate all files required. It is also temperamental when used. There are code

generation tools and XML/Ada code examples.

3.2 Design Thinking

Collins has specified that they want a code generator, which eliminates several options to solve

the problem. Within the code generation field, there are several options. The current generator

creates a file using a formatted string. While this works, it is difficult to maintain. Thus, we are

looking at using templating engines to create our files. We are also looking into options for xml

file validation.

11

3.3 Proposed Design

The proposed design consists of six primary modules. The first is the core module. The core

module is responsible for parsing the program arguments and passing them the necessary

module. The second module is Validation. This module is responsible for validating the XMLl file

against the XML schema. It is also responsible for throwing verbose and useful error messages

regarding file validation errors. The next module is the configuration module. This module is

responsible for adding language and message specific settings for the generation. This is then

passed to the Generation module. The generation module is responsible for getting the raw data

from the parsing module, putting the data in the proper format, and then passing it to the

templating module. The parsing module reads the XML file, and puts the data into java objects.

The templating module takes the processed data and produces the contents of a file using a

te,p[lating engine. It is also responsible for writing the file to disk. For this project, we plan on

using Mustache for templating . The final module is the CLI. It would be responsible for sending

arguments to the core module.

A standard generation workflow would look something like this. A user would start a generation

with the CLI. The core module would use the validation module to validate the input file. After

validation, the configuration module would provide a configuration based upon the program

arguments. This would be passed to the generation module. The generation module would then

call the parsing module to read in the XML file. The generation module would then process the

data, then pass it to the templating module. The templating module would then create the file

contents using Mustache, then write it to file.

This was designed largely with maintainability and extensibility in mind. There are many ways to

produce a file, but a major requirement of this project is to be extensible as needs change in the

future. The breakdown of modules allows the project to be easily extended in the future.

3.4 Technology Considerations

We will be using java as the primary language. This allows the project to be easily maintained, due

the prolific knowledge of java. One drawback of this is that the project, while written in java, will

also require a knowledge of Ada.

12

3.5 Design Analysis

This design is expected to work, but has not yet been implemented.

3.6 Development Process

For this project, we plan on using Agile development processes. We plan on having stand up

meetings, sprints, and weekly meetings with the Client. This fits well with the clients work

processes, and fits in well with the COVID workflow for college students.

4 Testing

4.1 Unit Testing

All classes will have proper unit tests. This will be done with JUnit for a unit testing framework,

and JMockit for mocking classes when needed. Classes will be tested in isolation to ensure

functionality and requirements compliance.

4.2 Interface Testing

The interface between the UI and the Java modules will be tested. Interfaces will be the CLI

interface to be run in the Windows CMD environment. Time permitting, a GUI will be developed,

which will also be tested. GUI testing will be done with Selenium.

4.3 Acceptance Testing

Acceptance testing provides some challenges. The team will not be able to test our generated

code in its final environment. Communication with the client will be critical, both for ensuring

the generator functions as the client expects and ensuring the generated code functions properly.

Confirming that the generated code can compile under Ada is a form of acceptance testing that

the team can perform themselves.

4.4 Results

Testing has not yet been performed. However, testing is a large part of the development of this

project outlined for the second semester of this course set, and will produce results as

development further progresses.

13

5 Implementation

For implementation, we plan on having two week sprints. Given the shortened Spring semester,

we anticipate 6 sprints over a 12 week period. This should provide sufficient time to implement

the project. We are using Gitlab and will be using merge branch workflow.

6 Closing Material

6.1 Conclusion

In this project, many plans and baseline development has been completed to provide the best

possible base for the development of our project throughout the rest of this semester and in the

next semester. We have laid a sustainable task management system, group discussion processes

and schedules, and have deeply discussed the requirements and goals of this project.

GenA, the proposed project in conjunction with Collins Aerospace, proposes using NDOs for use

in avionics systems as a means of intercommunication between systems. This must be completed

through a strict schema already used within this system to send messages between system

subsets. This schema is then used to implement the message in Ada. However, because of the

drawbacks of this current system such as errors, time consumption, and correction effort, Collins

Aerospace wishes to produce NDOs more efficiently and effectively.

The solution to this problem proposed by our team will implement a code generator to create

NDO messages from the XML schema provided using the XML file already being produced during

the Collins Aerospace currently in use processes. This will then create the ADA file directly,

reducing the potential for errors, and providing a more efficient, and understandable process to

work with. This solution will greatly improve on the current system, and produce a much more

user friendly, and efficient experience.

6.2 References

N/A

6.3 Appendices

There are no applicable appendices at this time.

